PROJECT DETAILS

Grant Agreement No.: 280464

Programme acronym: FP7-NMP

Topic: NMP.2011.4.01 New technologies based on physical processing of materials for mechanical or electrotechnical applications

Start date: June, 1st 2012

End date: May, 31st 2016

EU contribution: 7,151,000 €

Total cost: 10,285,626 €

PARTNERS

PROJECT COORDINATOR

Andrea Lazzeri a.lazzeri@ing.unipi.it

Tel: +39 0502217807 Fax: +39 0502217903

PROJECT MANAGER

Isella Vicini isella.vicini@warrantgroup.it

Tel: +39 051 9840863 Fax: +39 051 9840885

DISSEMINATION MANAGER

Cinzia lacono cinzia.iacono@warrantgroup.it

Tel: +39 051 9840863 Fax: +39 051 9840885

VISIT HELM WEBSITE

www.helm-project.eu

CONTACT US

info.helmfp7@gmail.com

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 280464.

High-frequency ELectro-Magnetic technologies

for advanced processing of ceramic

matrix composites and graphite expansion

PROGRAMME ACRONYM FP7-NMP SUBPROGRAMME AREA: NMP.2011.4.0-1

CONCEPT

HELM aims to investigate processing technologies based on Microwaves (MW) and Radiofrequencies (RF) for carbon ceramic materials (CCM).

CCM represent the latest and most promising solutions for high temperature applications in the manufacturing industry, in the transportation sectors and for new demanding electrotechnical applications.

Lightweight CCM are the **top priorities** of *EuMAT ETP Strategic Research Agenda* and a key issue of the *EC Research Roadmap on Materials* towards Horizon 2020.

CERAMIC MATRIX COMPOSITES (CMC)

Carbon (C) or silicon carbide (SiC) fibres reinforced CMC have high thermal conductivity, low thermal expansion, excellent thermal stress and creep resistance, high temperature microstructural stability.

EXPANDED GRAPHITE (EG)

Conductive fillers with best thermal and electrical conductivity (e.g. for next generation electro-chemical cells).

MAJOR IDENTIFIED GAPS

- 1. High costs
- 2. Materials performance and reliability
- 3. Process time and energy consumption
- 4. Environmental issues

